Per a què serveix l'ordenació topològica?
Per a què serveix l'ordenació topològica?

Vídeo: Per a què serveix l'ordenació topològica?

Vídeo: Per a què serveix l'ordenació topològica?
Vídeo: 👉 Quan s’escriu PERQUÈ, PER QUÈ o PER A QUÈ? | 🚀 Trucs i exemples | YouTube en CATALÀ 2024, De novembre
Anonim

A tipus topològic pren un graf acíclic dirigit i produeix una ordenació lineal de tots els seus vèrtexs de manera que si el gràfic G conté una aresta (v, w), aleshores el vèrtex v està abans del vèrtex w en l'ordenació. Els gràfics acíclics dirigits són utilitzat en moltes aplicacions per indicar la precedència dels esdeveniments.

En conseqüència, quin és el propòsit de l'ordenació topològica?

Ordenació topològica . En informàtica, a tipus topològic o ordenació topològica d'un gràfic dirigit és lineal ordenant dels seus vèrtexs de tal manera que per a cada aresta dirigida uv del vèrtex u al vèrtex v, u ve abans de v en el ordenant.

De la mateixa manera, com es determina el cicle en l'ordenació topològica? A detectar cicle , podem comprovar per a cicle en arbres individuals per comprovació vores posteriors. A detectar una vora posterior, podem fer un seguiment dels vèrtexs que es troben actualment a la pila de recursivitat de la funció per al recorregut DFS. Si arribem a un vertex que ja es troba a la pila de recursivitat, llavors hi ha a cicle a l'arbre.

De la mateixa manera, es pregunta què s'entén per ordenació topològica?

Ordenació topològica perquè el gràfic acíclic dirigit (DAG) és lineal ordenant de vèrtexs de tal manera que per a cada aresta dirigida uv, el vèrtex u està abans de v en el ordenant . N'hi pot haver més d'un ordenació topològica per gràfic.

Com funciona l'algoritme de Prims?

En informàtica, El de Prim (també conegut com a de Jarník) algorisme és un avariciós algorisme que troba un arbre abastant mínim per a un gràfic no dirigit ponderat. Això vol dir que troba un subconjunt d'arestes que forma un arbre que inclou tots els vèrtexs, on el pes total de totes les vores de l'arbre es minimitza.

Recomanat: